Search results

Search for "DNA nanostructure" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • nanostructure height must be associated with the energy transfer within the DNA nanostructure or highly localized effects, such as thermal and pressure shock waves in the vicinity of the track [40]. We are now preparing experiments to explore this issue. The formation of craters on the nanostructures was
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • Hyojeong Kim Kristin Arbutina Anqin Xu Haitao Liu Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States of America 10.3762/bjnano.8.236 Abstract We present a method to increase the stability of DNA nanostructure templates through
  • resistive to UV/O3 oxidation. The ALD-coated DNA templates were used for a direct pattern transfer to poly(L-lactic acid) films. Keywords: aluminium oxide (Al2O3); atomic layer deposition; DNA nanostructure; nanofabrication; nanoimprint lithography; pattern transfer; polymer stamp; replica molding
  • acryloxy perfluoropolyether (a-PFPE). The resulting negative imprints of the DNA nanostructures on the PMMA and PLLA polymer stamps further served as molds to transfer the patterns to positive imprints on a-PFPE films. In our method, the separation of the polymer film from the DNA nanostructure master
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Selective detection of Mg2+ ions via enhanced fluorescence emission using Au–DNA nanocomposites

  • Tanushree Basu,
  • Khyati Rana,
  • Niranjan Das and
  • Bonamali Pal

Beilstein J. Nanotechnol. 2017, 8, 762–771, doi:10.3762/bjnano.8.79

Graphical Abstract
  • the known concentration (50–120 ppm) of Mg2+ ions in synthetic tap water and a real life sample of Gelusil (300–360 ppm Mg2+), a widely used antacid medicine. Therefore, this method could be a sensitive tool for the estimation of water hardness after careful preparation of a suitably designed Au–DNA
  • nanostructure. Keywords: Au–DNA nanocomposites; enhanced fluorescence emission; metal-ion detection; Mg2+ ion detection; Introduction The interactions between Au nanoparticles (AuNPs) and DNA are essential to classify and expand upon, given the potential applications for NP–DNA complexes such as gene therapy
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2017

Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

  • Anja Henning-Knechtel,
  • Matthew Wiens,
  • Mathias Lakatos,
  • Andreas Heerwig,
  • Frieder Ostermaier,
  • Nora Haufe and
  • Michael Mertig

Beilstein J. Nanotechnol. 2016, 7, 948–956, doi:10.3762/bjnano.7.87

Graphical Abstract
  • electrodes confirming that the trapping only occurs in the presence of an electrical field. We then conjugated 15 nm gold nanoparticles to oligonucleotides with a poly(T) sequence, and further attached them to the ten double-sticky-end locations along the DNA nanostructure through hybridization. Figure 4b
  • pristine DNA origami can be explained by the difference in polarizability of the metallic nanoparticles and the DNA nanostructure, i.e., the dipole relaxation time and the nature of the dipole. A dipole in gold nanoparticles is induced due to direct polarization of the electron cloud, whereas polarization
  • -nanoparticle modified DNA structure, (b) plain DNA structure at the left electrode, and (c) absence of a DNA nanostructure as obtained from finite element method simulations. Supporting Information Supporting Information File 76: Sequences of staple strands. Acknowledgements We kindly acknowledge financial
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2016

Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

  • Rina Kumari,
  • Sumit Singh,
  • Mohan Monisha,
  • Sourav Bhowmick,
  • Anindya Roy,
  • Neeladri Das and
  • Prolay Das

Beilstein J. Nanotechnol. 2016, 7, 697–707, doi:10.3762/bjnano.7.62

Graphical Abstract
  • composite DNA nanostructures by the self-assembly of complementary symmetrical 2,6,14-triptycenetripropiolic acid (TPA)–DNA building blocks and zinc protoporphyrin IX (Zn PpIX). DNA–organic molecule scaffolds for the composite DNA nanostructure were constructed through covalent conjugation of TPA with 5
  • therapy (PDT) applications as well as photocatalytic reactions. Keywords: DNA nanostructure; DNA–organic hybrid; DNA self-assembly; 2,6,14-triptycenetripropiolic acid; zinc protoporphyrin IX; Introduction Hybrid nanomaterials resulting from the covalent conjugation of DNA with organic molecules [1][2][3
  • angle of 165°. The data acquisition time for each measurement was 1 h. All buffer solutions were filtered through syringe filters prior to use to remove dust particles. Photocatalytic activity of composite nanostructure The photocatalytic efficiency of composite DNA nanostructure was evaluated by
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2016
Other Beilstein-Institut Open Science Activities